Search results for " Hydrogen-Ion Concentration"

showing 10 items of 15 documents

Effect of reducing agents on the acidification capacity and the proton motive force of Lactococcus lactis ssp. cremoris resting cells.

2002

International audience; Reducing agents are potential inhibitors of the microbial growth. We have shown recently that dithiothreitol (DTT), NaBH(4) and H(2) can modify the proton motive force of resting cells of Escherichia coli by increasing the membrane protons permeability [Eur. J. Biochem. 262 (1999) 595]. In the present work, the effect of reducing agents on the resting cells of Lactococcus lactis ssp. cremoris, a species widely employed in dairy processes was investigated. DTT did not affect the acidification nor the DeltapH, in contrast to the effect previously reported on E. coli. The DeltaPsi was slightly increased (30 mV) at low pH (pH 4) in the presence of 31 mM DTT or 2.6 mM NaB…

MESH : Cell LineMESH: Hydrogen-Ion ConcentrationMESH : DithioniteBorohydridesMESH : DithiothreitolBacterial growthmedicine.disease_causeMESH: Proton-Motive ForceDithiothreitolSodium dithionitechemistry.chemical_compoundMESH : Proton-Motive ForceElectrochemistry[INFO.INFO-BT]Computer Science [cs]/Biotechnology0303 health sciencesMESH : Interphasebiologyfood and beveragesProton-Motive ForceGeneral MedicineHydrogen-Ion ConcentrationMESH: BorohydridesLactococcus lactisMembraneBiochemistryReducing AgentsMESH : Sensitivity and SpecificityMESH : Reducing Agents[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyReducing agentMESH: Reducing AgentsBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular BiologySensitivity and SpecificityCell LineMESH: Interphase03 medical and health sciencesSpecies SpecificityMESH : Hydrogen-Ion ConcentrationMESH: DithionitemedicineMESH : Species SpecificityMESH: Species SpecificityLactic AcidPhysical and Theoretical ChemistryEscherichia coli[SDV.BC] Life Sciences [q-bio]/Cellular BiologyInterphase030304 developmental biology[ SDV.BC ] Life Sciences [q-bio]/Cellular Biology030306 microbiologyChemiosmosisLactococcus lactisDithionitebiology.organism_classificationMESH: Sensitivity and SpecificityMESH: Cell LineDithiothreitol[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryMESH: Lactococcus lactisMESH : BorohydridesMESH : Lactic AcidBiophysicsMESH: Lactic AcidMESH : Lactococcus lactisMESH: Dithiothreitol
researchProduct

Mechanisms underlying the toxicity of lactone aroma compounds towards the producing yeast cells

2003

M. A G U E D O , L. B E N E Y , Y. W A C H EA N D J. - M. B E L I N. 2003. Aims: To study the fundamental mechanisms of toxicity of the fruity aroma compound c-decalactone, that lead to alterations in cell viability during its biotechnological production by yeast cells; Yarrowia lipolytica that is able to produce high amounts of this metabolite was used here as a model. Methods and Results: Lactone concentrations above 150 mg l )1 inhibited cell growth, depolarized the living cells and increased membrane fluidity. Infrared spectroscopic measurements revealed that the introduction of the lactone into model phospholipid bilayers, decreased the phase transition temperature. Moreover, the H + -…

MESH : YarrowiaMembrane FluidityMESH : Cell MembraneIntracellular pHMESH : Membrane FluidityYarrowiaFluorescence PolarizationApplied Microbiology and BiotechnologyMESH : PhospholipidsMembrane PotentialsCell membraneMESH : Spectroscopy Fourier Transform InfraredLactonesMESH : Hydrogen-Ion ConcentrationSpectroscopy Fourier Transform InfraredmedicineMembrane fluidityMESH : Membrane PotentialsViability assay[SDV.BC] Life Sciences [q-bio]/Cellular BiologySpectroscopyPhospholipidsAdenosine TriphosphatasesMESH : Adenosine Triphosphatasesbiology[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyCell growthCell MembraneYarrowiaGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationBioproductionYeastMESH : Lactones[INFO.INFO-BT] Computer Science [cs]/Biotechnologymedicine.anatomical_structureBiochemistryFourier Transform InfraredMESH : Fluorescence Polarization[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyBiotechnologyJournal of Applied Microbiology
researchProduct

According to the CPLL proteome sheriffs, not all aperitifs are created equal!

2014

Combinatorial peptide ligand libraries (CPLLs) have been adopted for investigating the proteome of a popular aperitif in Northern Italy, called "Amaro Branzi", stated to be an infusion of a secret herbal mixture, of which some ingredients are declared on the label, namely Angelica officinalis, Gentiana lutea and orange peel, sweetened by a final addition of honey. In order to assess the genuineness of this commercial liqueur, we have prepared extracts of the three vegetable ingredients, assessed their proteomes, and compared them to the one found in the aperitif. The amaro's proteome was identified via prior capture with CPLLs at two different pH values (2.2 and 4.8). Via mass spectrometry …

ProteomeGenomic dataBiophysicsOrange (colour)BiochemistryAnalytical ChemistryGentiana luteaPeptide LibraryHumansGentianaAngelica officinalis; Aperitifs; Combinatorial peptide ligand libraries; Gentiana lutea; Low abundance proteome; Mass spectrometry; Alcoholic Beverages; Angelica; Citrus sinensis; Fruit; Gentiana; Honey; Humans; Hydrogen-Ion Concentration; Mass Spectrometry; Peptide Library; Plant Extracts; Plant Proteins; Proteome; Biochemistry; Biophysics; Analytical Chemistry; Molecular BiologyLow abundance proteomeMolecular BiologyAngelicaPlant ProteinsChromatographybiologyMass spectrometryPlant ExtractsAlcoholic BeveragesHoneyHydrogen-Ion Concentrationbiology.organism_classificationNorthern italyAperitifsFruitOfficinalisProteomeAngelica officinalisGentiana luteaCombinatorial peptide ligand librariesCitrus × sinensisGentianaCitrus sinensis
researchProduct

SCD5-induced oleic acid production reduces melanoma malignancy by intracellular retention of SPARC and cathepsin B

2014

A proper balance between saturated and unsaturated fatty acids (FAs) is required for maintaining cell homeostasis. The increased demand of FAs to assemble the plasma membranes of continuously dividing cancer cells might unbalance this ratio and critically affect tumour outgrowth. We unveiled the role of the stearoyl-CoA desaturase SCD5 in converting saturated FAs into mono-unsaturated FAs during melanoma progression. SCD5 is down-regulated in advanced melanoma and its restored expression significantly reduced melanoma malignancy, both in vitro and in vivo, through a mechanism governing the secretion of extracellular matrix proteins, such as secreted protein acidic and rich in cysteine (SPAR…

cathepsin B2734Intracellular SpaceDown-RegulationCell LineMelanocyteCell Line TumormelanomaHumansintracellular acidityOsteonectinNeoplasticTumorMedicine (all)Fatty AcidsSPARCHydrogen-Ion ConcentrationGene Expression Regulation NeoplasticSCD5Gene Expression Regulationoleic acidDisease ProgressionMelanocytesFatty AcidStearoyl-CoA Desaturasecathepsin B; intracellular acidity; melanoma; oleic acid; SCD5; SPARC; Cathepsin B; Cell Line Tumor; Disease Progression; Down-Regulation; Fatty Acids; Humans; Hydrogen-Ion Concentration; Intracellular Space; Melanocytes; Melanoma; Oleic Acid; Osteonectin; Stearoyl-CoA Desaturase; Gene Expression Regulation Neoplastic; 2734; Medicine (all)Human
researchProduct

Animal rennets as sources of dairy lactic acid bacteria

2014

ABSTRACT The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri , were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH …

Streptococcus thermophilusColony CountColony Count MicrobialApplied Microbiology and BiotechnologyAcidification; Animal rennet pastes; Autolysis; Lactic acid bacteria; Microbial ecology; PyrosequencingMicrobial ecologyMicrobialCheeseRNA Ribosomal 16SLactobacillusEnterococcus casseliflavusLactic acid bacteriaCluster AnalysisPhylogenyEcologybiologyLactobacillus crispatusBacterialAnimal rennet pastefood and beveragesPyrosequencingHydrogen-Ion ConcentrationAutolysiBiotaAnimals; Cluster Analysis; Colony Count Microbial; DNA Bacterial; DNA Ribosomal; Enterococcus; Hydrogen-Ion Concentration; Lactobacillus; Microbial Viability; Milk; Molecular Sequence Data; Phylogeny; RNA Ribosomal 16S; Sequence Analysis DNA; Biota; ChymosinMilkSequence AnalysisChymosinBiotechnologyDNA Bacterial16SMolecular Sequence DataDNA RibosomalEnterococcus faecalisMicrobiologyAcidificationAnimalsRibosomalMicrobial ViabilitySequence Analysis DNADNAbiology.organism_classificationLactobacillus reuteriLactobacillusEnterococcusFood MicrobiologyRNAMetagenomicsEnterococcusFood ScienceEnterococcus faeciumSettore AGR/16 - Microbiologia Agraria
researchProduct

R-Roscovitine (Seliciclib) prevents DNA damage-induced cyclin A1 upregulation and hinders non-homologous end-joining (NHEJ) DNA repair.

2010

Abstract Background CDK-inhibitors can diminish transcriptional levels of cell cycle-related cyclins through the inhibition of E2F family members and CDK7 and 9. Cyclin A1, an E2F-independent cyclin, is strongly upregulated under genotoxic conditions and functionally was shown to increase NHEJ activity. Cyclin A1 outcompetes with cyclin A2 for CDK2 binding, possibly redirecting its activity towards DNA repair. To see if we could therapeutically block this switch, we analyzed the effects of the CDK-inhibitor R-Roscovitine on the expression levels of cyclin A1 under genotoxic stress and observed subsequent DNA damage and repair mechanisms. Results We found that R-Roscovitine alone was unable …

Cancer ResearchDNA RepairDNA repairDNA damageSettore MED/06 - Oncologia MedicaCyclin DCyclin ACyclin BSettore BIO/11 - Biologia Molecolarelcsh:RC254-282RoscovitineProtein Kinase InhibitorsBIO/10 Biochimicaroscovitine doxorubicinbiologyResearchCyclin A1; Doxorubicin; Protein Kinase Inhibitors; Purines; Up-Regulation; DNA Damage; DNA Repair; Hydrogen-Ion Concentration; Cancer Research; Molecular Medicine; OncologyG2-M DNA damage checkpointHydrogen-Ion Concentrationlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensUp-RegulationOncologyDoxorubicinPurinesCancer researchbiology.proteinMolecular MedicineCyclin A1biological phenomena cell phenomena and immunityCyclin A1Cyclin A2DNA DamageMolecular cancer
researchProduct

Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica.

2001

International audience; 8-Hydroxypyrene-1,3,6-trisulfonic acid (pyranine) can be used as a vital intracellular pH (pH(i)) indicator. In the yeast Yarrowia lipolytica, a partial efflux of the probe was detected by using the pH-independent wavelength of 415 nm. A simplified correction of the fluorescent signals was applied, enabling to show for this species a good near-neutral pH(i) maintenance capacity in a pH 3.9 medium. Octanoic acid, which is known to have toxic effects on yeast, decreased the pH(i) and increased the 260-nm-absorbing compounds leakage. However, this acid inhibited the fluorescent probe efflux linearly with its concentration suggesting a pH(i)-dependent efflux of pyranine …

CytoplasmMESH: Hydrogen-Ion ConcentrationCell Membrane Permeability[SDV.BIO]Life Sciences [q-bio]/BiotechnologyOctanoic Acidschemistry.chemical_compoundMESH : Fluorescent DyesMESH: Cell Membrane PermeabilityArylsulfonates[INFO.INFO-BT]Computer Science [cs]/BiotechnologyMESH: ArylsulfonatesMESH : Octanoic AcidsbiologyCaprylic acidHydrogen-Ion ConcentrationMESH: Fluorescent DyesFluorescenceBiochemistryEffluxCaprylates[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyIntracellularMESH : CytoplasmIntracellular pHMESH: Biological Transport[SDV.BC]Life Sciences [q-bio]/Cellular BiologyMicrobiologyPyranineMESH : ArylsulfonatesMESH : Hydrogen-Ion ConcentrationGeneticsMESH: SaccharomycetalesMolecular Biology[SDV.BC] Life Sciences [q-bio]/Cellular BiologyFluorescent Dyes[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyMESH: Cytoplasm[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyYarrowiaBiological TransportMESH : Saccharomycetalesbiology.organism_classificationMESH: Octanoic AcidsYeast[SDV.BIO] Life Sciences [q-bio]/BiotechnologyMESH : Biological Transport[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryMESH : Cell Membrane PermeabilitySaccharomycetales
researchProduct

Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: A guide for prokaryotic and eukaryotic investigation

2008

International audience; Many fluorescent techniques are employed to evaluate the viability and activity of microbial cells used in biotechnology. These techniques are sometimes complex and the interpretation of results opened to misunderstanding. Moreover, new developments are constantly proposed especially concerning a more accurate evaluation of the state of the cells including eukaryotic microorganisms. This paper aims at presenting to biotechnologists unfamiliar with fluorescence the principles of these methods and the related possible pitfalls. It focuses on probes of the physical (integrity and fluidity) and energetical (intracellular pH and membrane potential) state of the cell membr…

Cell Membrane PermeabilityMembrane FluidityMESH : Microscopy FluorescenceMESH : Cell MembraneIntracellular pHMESH : Membrane FluidityBiologyApplied Microbiology and BiotechnologyMembrane PotentialsCell membraneIndustrial MicrobiologyMESH : Hydrogen-Ion ConcentrationYeastsGram-Negative BacteriamedicineMESH : Membrane PotentialsMESH : Fluorescent DyesFluorescent DyesMESH : YeastsMESH : Spectrometry FluorescenceCell Membrane[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyGeneral MedicineHydrogen-Ion ConcentrationMESH : Gram-Negative BacteriaMESH : Industrial MicrobiologyFluorescenceYeastSpectrometry Fluorescencemedicine.anatomical_structureMicroscopy FluorescenceBiochemistryMESH : Cell Membrane PermeabilityNucleic acidMolecular MedicineBiotechnology Journal
researchProduct

Noninvasive methods for the detection of upper and lower airway inflammation in atopic children

2006

Background Exhaled nitric oxide (FE NO ) and exhaled breath condensate (EBC) are noninvasive methods to assess inflammation. Objective To investigate the role of the FE NO and of the EBC pH and IL-5 levels in atopic children. Methods We evaluated oral and nasal FE NO and the pH and IL-5 of oral and nasal EBC in children with atopic dermatitis (AD; n=18), allergic rhinitis (AR; n=18), intermittent asthma (n = 21), moderate persistent asthma (n = 18), and healthy controls (HCs; n=16). Results Oral FE NO was significantly increased in asthma, whereas the nasal values were increased in AR and asthma in comparison with HCs. The pH of oral EBC was lower in AD and asthma than in AR and HCs, wherea…

MaleAllergyRhinitis Allergic PerennialAdolescentImmunologyBronchitiNitric OxideDermatitis AtopicAtopymedicineImmunology and AllergyHumansExhaled breath condensateExpirationBronchitisChildInflammation MediatorAsthmabusiness.industryMouth MucosaRhinitis Allergic SeasonalAtopic dermatitisDermatitis Atopic; Mouth Mucosa; Exhalation; Humans; Hydrogen-Ion Concentration; Asthma; Child; Nitric Oxide; Rhinitis Allergic Perennial; Rhinitis Allergic Seasonal; Interleukin-5; Nasal Mucosa; Inflammation Mediators; Bronchitis; Adolescent; Female; MaleHydrogen-Ion Concentrationmedicine.diseaseAsthmarespiratory tract diseasesNasal Mucosamedicine.anatomical_structureExhalationImmunologyExhaled nitric oxideFemaleInflammation MediatorsInterleukin-5businessRespiratory tractHuman
researchProduct

Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential.

1999

International audience; The pH homeostasis and proton-motive force (Deltap) of Escherichia coli are dependent on the surrounding oxidoreduction potential (ORP). Only the internal pH value and, thus, the membrane pH gradient (DeltapH) component of the Deltap is modified, while the membrane potential (DeltaPsi) does not change in a significant way. Under reducing conditions (Eh < 50 mV at pH 7.0), E. coli decreases its Deltap especially in acidic media (21% decrease at pH 7.0 and 48% at pH 5.0 for a 850-mV ORP decrease). Measurements of ATPase activity and membrane proton conductance (CH+m) depending on ORP and pH have shown that the internal pH decrease is due to an increase in membrane prot…

MESH: Oxidation-ReductionMESH : Escherichia coliMESH: Hydrogen-Ion ConcentrationMembrane permeabilitymedicine.disease_causeBiochemistryMembrane Potentials03 medical and health sciencesMESH : Hydrogen-Ion Concentration[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineEscherichia coliMESH: Adenosine TriphosphatasesMESH : Membrane PotentialsMESH : ProtonsMESH: Membrane Potentials[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[INFO.INFO-BT]Computer Science [cs]/Biotechnology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliComputingMilieux_MISCELLANEOUS030304 developmental biologyMESH : Oxidation-ReductionMembrane potentialchemistry.chemical_classificationAdenosine Triphosphatases0303 health sciencesChromatographyMESH : Adenosine Triphosphatases030306 microbiologyChemiosmosisChemistryMESH: Escherichia coliConductanceHydrogen-Ion Concentration[INFO.INFO-BT] Computer Science [cs]/BiotechnologyMembranePermeability (electromagnetism)BiophysicsThiolMESH: ProtonsProtonsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/Biotechnology
researchProduct